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ABSTRACT 

In this study, first of all, we consider wave equations with constant coefficients. By 
using convolution we then produce a new equation with variable coefficients. Finally, 
we apply two techniques: double Laplace transform and double Sumudu transform to 
solve the new wave equation with non-constant coefficients and establish a 
relationship between double Sumudu transform and double Laplace transform. 
 
Keywords: Double Laplace transform, single Laplace transform, double Sumudu 
transform and convolution theorem. 

 

 

INTRODUCTION 

The wave equation is known as one of fundamental equations in 

mathematical physics and occurs in many branches of physics, in applied 
mathematics as well as in engineering. It is also known that there are two 

types of these equations; The homogenous equation with constant 

coefficients has many classical solutions such as separation of variables 
(Lamb,1995), the methods of characteristics (Myint, 1980 and Constanda, 

2002), single Laplace transform and Fourier transform (Duffy, 2004) and 

non-homogenous equations with constant coefficient which is solved by 

double Laplace transform (Babakhani and Dahiya, 2001) and operation 
calculus (Brychkov et al., 1992). 

 

In this study we use double Laplace transform and double Sumudu 
transform to solve non homogenous wave equation with non-constant 

coefficient where the non homogenous terms are double convolution 

functions. In this study we follow the method that was proposed by A. 

Kiliçman and H. Eltayeb (Kilicman and Eltayeb, 2008) and (Estrin and 
Higgins, 1951) where they extended one dimensional convolution theorem 

to two dimensional case. 
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First of all we recall the following definitions which were given by 

Tchuenche and Nyimvua (Tchuenche and Nyimvua, 2007). 

 

Definition 1: 

 
The double Sumudu transform is defined by 

 

[ ]
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and the double Sumudu transform of second partial derivative with respect 

to x is of form 
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The integral inside the bracket can be computed as 

 
2
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1 ( , ) 1 1 1 (0, )
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By taking Sumudu transform with respect to t  for equation (1), we get 

double Sumudu transform in the form of 

 
2

2 2 2 2

( , ) 1 1 1 (0, )
;( , ) ( , ) (0, )

f x t F v
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u xx u u

 ∂ ∂
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∂∂ 
.                      (2) 

 

Similarly, the double Sumudu transform of  
2

2

( , )f t x

t

∂

∂
  is given by 

 
2

2 2 2

( , ) 1 1 1 ( ,0)
;( , ) ( , ) ( ,0)
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S u v F u v F u

v tt v v

 ∂ ∂
= − − 

∂∂ 
                         (3) 

 

and Estrin and Higgins (Estrin and Higgins, 1951) defined double Laplace 

transform by 
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where x, t > 0 and p, s complex value and defined the first order partial 

derivative as 
( , )

;( , ) ( , ) (0, ).x t

f x t
L L p s pF p s F s

x

∂ 
= − ∂ 

 

 

The double Laplace transform for second partial derivative with respect 

to x given by 
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xx
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and double Laplace transform for second partial derivative with respect 

to t similarly as above given by 

 
2

2

2

( , ) ( ,0)
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tt
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In a similar manner the double Laplace transform of a mixed partial 

derivative can be deduced from the single Laplace transform as 

 
2 ( , )

;( , ) ( , ) ( ,0) (0, ) (0,0)x t

f x t
L L p s psF p s pF p sF s F

x t

 ∂
= − − − 
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. 

 
The double Sumudu transform and double Laplace transform having strong 

relation (see Tchuenche and Nyimvua, 2007.) may be expressed either as 

 

2

1 1
(I)    ( , ) ( , ); ,uvF u v £ f x y

u v

  
=   

  
 

or 

2

1 1
(II)    ( , ) ( , ); , ,psF p s £ f x y

p s

  
=   

  
 

 

where 2£  represents the operation of double Laplace transform. In particular, 

this relation is best illustrated by the fact that the double Sumudu and double 

Laplace transform interchange the image of sin( )x t+ and cos( )x t+ that are 
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[ ] [ ]2 2 2 2
sin( ) cos( ) ,

(1 ) (1 )
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+ +
 

and 

[ ] [ ]2 2 2 2

1
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+ +
 

 

We note that the relation between double Sumudu of convolution and double 

Laplace transform of convolution is 
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WAVE EQUATION IN ONE DIMENSIONAL SPACE AND 

DOUBLE LAPLACE TRANSFORM AND DOUBLE SUMUDU 

TRANSFORM 

Consider non-homogenous one dimensional wave equation with non-

constant coefficient in the form 

[ ]
1
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where ( , )p x t  and ( , )ig x t  are polynomials. 

 

Now we let  ),( txF   be a solution of 

2
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and further we consider ),( txK as a solution of 
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then ),( txF satisfies equation (6): 
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and similarly, ),( txK satisfies equation (8): 
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Now, we can easily check that the convolution ( , ) ( , )F x t K x t∗∗  is not a 

solution of (6). Indeed from (6) it follows that 

 

( ) ( )
?

1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )  
n

itt xx
i

F x t K x t F x t K x t f x t g x t
=

∗ ∗ − ∗ ∗ = ∗ ∗∑             (10) 

on using the partial derivatives of the convolution; thus the left hand side of 

equation (10) gives 
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and then equation (10) can be written in the form 
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by substituting equation (7) into (9) and equation (6) into (10) we have 

1
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and 

1

( , ) ( , ) ( , ) ( , ) 
n

i

i

f x t K x t f x t g x t
=

∗∗ ≠ ∗∗∑                           (14) 

and thus we can easily see from the equations (13) and (14) that the 

convolution ( , ) ( , )F x t K x t∗∗   is not a solution of equation (6). In general, 

however, it is a solution for another type of equation as given in the 

following theorem. 

 

Theorem 1: If ( , )F x t is a solution of 

1

( , ) ( , )
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u u f x t g x t
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under the initial condition 
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and ( , )K x t  is a solution of 
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under the same conditions, then  ( , ) ( , )F x t K x t∗∗   is a solution of the 

following equation 

2
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where ( , )f x t  is an exponential function and  ( , )p x t   is a polynomial.  

 

Proof: Since ( , )F x t  is a solution of equation (15) then 

1
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holds  and ( , )K x t  is a solution of equation (16) then 

1
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is also true and then by substitution what we have 
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1
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on using the partial derivative of convolution, we obtain 
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and then equation (20) is followed by 
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by substituting equation (18) into (21) we have 
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this shows that the convolution ( , ) ( , )F x t K x t∗∗ is a solution of equation    

(17). 

 

In the next two examples we apply double Laplace transform and double 
Sumudu transform for wave equation. We compare the solution of one 

dimensional wave equation having constant and non constant coefficients by 

using two techniques. 

 
Example: Consider the one dimensional wave equation in the form 
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by taking double Laplace Transform and single Laplace Transform for 

equation (23),  we obtain 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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Now by taking double inverse Laplace transform with respect to ,s p  for 

equation (24), we obtain the solution of equation (23) in the form 

 

4 2 2 3

2 2 3 2 3 2 3
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Now, we multiply the left hand side equation of (23) by non-constant 

coefficient 3 4x t ∗∗   where the symbol ∗∗  means a double convolution with 

respect to x  and t   respectively, and apply the same technique that we used 

above then we get the solution in the form of 

 

1 5 7
( , )

32 288 144

t x t x t xv x t e e e t+ − + += − +  .               (25) 

 

If we take second derivatives with respect to t  and x  for equation (25), and 

taking the difference between them and multiply the result by 3 4x t ∗∗ , we 

obtain the non-homogenous term plus a function ( , )h x t . That is 

 

( ) ( )3 4
( ) ( , ).

tt xx tt xx
x t v v u u h x t∗∗ − = − +  

 

In the next Theorem we discuss the Sumudu transform of double 

convolution as follows. 

 



On Double Sumudu Transform and Double Laplace Transform 

 Malaysian Journal of Mathematical Sciences 25 

 

Theorem 2: Let ( , )f x t  and ( , )g x t be double Sumudu transformable. Then 

double Sumudu transform of the double convolution of the ( , )f x t  

and ( , )g x t  exists 
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t x

f g x t f g x t d dζ η ζ η ζ η∗∗ = − −∫ ∫  

 

and is given by 
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Proof: By using the definition of double Sumudu transform and double 

convolution, we have 
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Let xα ζ= −   and  tβ η= − and using the valid extension of upper bound of 

integrals to t → ∞   and ,x → ∞  it yields 
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where both function ( , )f x t  and ( , )g x t  have zero value for 0,t <  and 

0,x < and it follows with respect to lower limit of integrations that 
 

[ ] ( ) ( )    
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 0  0  0  0

1
( )( , ); , ( , ) ( , )v u v uS f g t x v u f e d d e g d d

uv

ζ η βα

ζ η ζ η α β α β
∞ ∞ ∞ ∞− − − −

∗∗ = ∫ ∫ ∫ ∫ , 

 

then, it is easy to see that 

 

[ ]2 ( )( , ); ( , ) ( , ) ( , )S f g t x u v uvF v u G v u∗∗ = . 

 
In particular, consider the functions ( , ) sin( )f x t x t= +  and 

( , ) cos( ).g x t x t= +  We can easily prove that 
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The left hand side of the above equation is given by 
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2 2 2 2
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and the right hand side is  given by 
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From equations (26) and (27) we have 

 

[ ]2 ( )( , );( , ) ( , ) ( , )S f g t x u v uvF v u G v u∗∗ = . 
 

Now, we are going back to apply the double Sumudu transform for the wave 

equation that is given in example1 as follows 

 
2 2 3 2              ( , ) R
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t
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+ +
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= = +
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                        (26) 

 

By taking the double Sumudu transform wave equation and single Sumudu 

transform of equation for the conditions, we obtain 
 

3 2 2 2

2 2 2 2 2 2 2

2 3 2 2

2 2 2 2 2 2 2

5 4 6 5

2 2 2 2

( , )
( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

2 12
.
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+ +
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           (27) 

In order to find the inverse double Sumudu transform of equation (27), we 

use the next theorem. 
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Theorem 3: Let ( )G u  be the Sumudu transform of ( )f t such that 

 

(i) 
1( )
s

G

s
  is a meromorphic function, with singularities having Re( ) ,s γ<  

and 

 
(ii) there exists a circular region Γ  with radius R  and positive constants, M  

and ,K  with 

 
1( )

,Ks
G

MR
s

−<  

 
then the function ( )f t  is given by 

 

 

 
For the proof see (Watugala, 1993). 
 

Now, by taking double inverse Sumudu transform for both sides of equation 

(27) we obtain the solution of equation (26) as follows 

 

3 2

2 2 6 2 2 4 4

2 2 5 7 3 5 2 2

5 4 2 3 2 3

13 5
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3 2
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1 1
2 .

10 4
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x
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+

= + + − + + + + +
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Now, we multiply the left hand side equation of (26) by non-constant 

coefficient 3 4x t ∗∗  where the symbol ∗∗ means a double convolution with 

respect to x and t  respectively, then equation (26) becomes 

 

1 1
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i
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i s s s

γ

γπ

+ ∞−

− ∞

  
= =   

   
∑∫



Hassan Eltayeb & Adem Kilicman 

 

28 Malaysian Journal of Mathematical Sciences 

 

( )3 4 2 2 3 2              ( , ) R

( ,0) ,  ( ,0)

(0, ) ,  (0, ) .

x t x t
tt xx

x x x
t
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x

x t F F e xt e x t x t
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+ +
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= = +
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             (28) 

 

Similarly, we apply the double Sumudu transform technique and single 

Sumudu transform for equation (28) to obtain 

 
3 2 2 2

2 2 2 2 2 2 2
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2 2

2 2 2 2
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( 1) ( ) ( 1) ( )
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Now, by taking double inverse Sumudu transform for both sides of equation 

(29) we obtain the solution of equation (28) as follows 

 

1

5 5 7
( , ) .

288 288 144

t x t x t xF x t e e e t+ − + += − + +  

 

 

CONCLUSION 

Thus we note that the wave equation in one dimensional with the 

non-constant coefficients (polynomials), under the initial conditions, give 

similar results when we use the double Laplace and double Sumudu 
transforms. 
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